Issue Navigator

Volume 14 No. 06
Earn CME
Accepted Papers

Scientific Investigations

Snore Sound Analysis Can Detect the Presence of Obstructive Sleep Apnea Specific to NREM or REM Sleep

Shahin Akhter, PhD1; Udantha R. Abeyratne, PhD1; Vinayak Swarnkar, PhD1; Craig Hukins, MBBS, FRACP2
School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Australia; 2Sleep Disorders Centre, Department of Respiratory and Sleep Medicine, Princess Alexandra Hospital, Woolloongabba, Australia

Study Objectives:

Severities of obstructive sleep apnea (OSA) estimated both for the overall sleep duration and for the time spent in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep are important in managing the disease. The objective of this study is to investigate a method by which snore sounds can be analyzed to detect the presence of OSA in NREM and REM sleep.


Using bedside microphones, snoring and breathing-related sounds were acquired from 91 patients with OSA (35 females and 56 males) undergoing routine diagnostic polysomnography studies. A previously developed automated mathematical algorithm was applied to label each snore sound as belonging to either NREM or REM sleep. The snore sounds were then used to compute a set of mathematical features characteristic to OSA and to train a logistic regression model (LRM) to classify patients into an OSA or non-OSA category in each sleep state. The performance of the LRM was estimated using a leave-one-patient-out cross-validation technique within the entire dataset. We used the polysomnography-based diagnosis as our reference method.


The models achieved 80% to 86% accuracy for detecting OSA in NREM sleep and 82% to 85% in REM sleep. When separate models were developed for females and males, the accuracy for detecting OSA in NREM sleep was 91% in females and 88% to 89% in males. Accuracy for detecting OSA in REM sleep was 88% to 91% in females and 89% to 91% in males.


Snore sounds carry sufficient information to detect the presence of OSA during NREM and REM sleep. Because the methods used include technology that is fully automated and sensors that do not have a physical connection to the patient, it has potential for OSA screening in the home environment. The accuracy of the method can be improved by developing sex-specific models.


Akhter S, Abeyratne UR, Swarnkar V, Hukins C. Snore sound analysis can detect the presence of obstructive sleep apnea specific to NREM or REM sleep. J Clin Sleep Med. 2018;14(6):991–1003.

Please login to continue reading the full article

Subscribers to JCSM get full access to current and past issues of the JCSM.

Login to JCSM

Not a subscriber?

Join the American Academy of Sleep Medicine and receive a subscription to JCSM with your membership

Subscribe to JCSM:  $75/volume year for individuals or $140/volume year for institutions to access all current articles and archives published in JCSM.

Download this article*:   $20 to access a PDF version of a specific article from the current issue of JCSM.

*Purchase of an electronic download of JCSM provides permission to access and print the issue/article for personal scholarly, research and educational use. Please note: access to the article is from the computer on which the article is purchased ONLY. Purchase of the article does not permit distribution, electronic or otherwise, of the article without the written permission of the AASM. Further, purchase does not permit the posting of article text on an online forum or website.