Issue Navigator

Volume 13 No. 11
Earn CME
Accepted Papers

Scientific Investigations

Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography

Javad Razjouyan, PhD1; Hyoki Lee, PhD1; Sairam Parthasarathy, MD2; Jane Mohler, MPH, PhD, MPH3; Amir Sharafkhaneh, MD, PhD4; Bijan Najafi, PhD1
1Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Department of Surgery, Baylor College of Medicine, Houston, Texas; 2UAHS Center for Sleep and Circadian Science, University of Arizona, Tucson, Arizona; 3Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, Arizona; 4Sleep Center, Michael E. DeBakey, Veterans Affairs Medical Center, Houston, Texas

Study Objectives:

To improve sleep quality assessment using a single chest-worn sensor by extracting body acceleration and sleep position changes.


Sleep patterns of 21 participants (50.8 ± 12.8 years, 47.8% female) with self-reported sleep problems were simultaneously recorded using a chest sensor (Chest), an Actiwatch (Wrist), and polysomnography (PSG) during overnight sleep laboratory assessment. An algorithm for Chest was developed to detect sleep/wake epochs based on body acceleration and sleep position/postural changes data, which were then used to estimate sleep parameters of interest. Comparisons between Chest and Wrist with respect to PSG were performed. Identification of sleep/wake epochs was assessed by estimating sensitivity, specificity, and accuracy. Agreement between sensor-derived sleep parameters and PSG was assessed using correlation coefficients and Bland-Altman analysis.


Chest identified sleep/wake epochs with an accuracy of on average 6% higher than Wrist (85.8% versus 79.8%). Similar trends were observed for sensitivity/specificity values. Correlation between Wrist and PSG was poor for most of the sleep parameters of interest (r = 0.0–0.3); however, Chest and PSG correlation showed moderate to strong agreement (r = 0.4–0.8) with relatively low bias and high precision bias (precision): 9.2 (13.2) minutes for sleep onset latency; 17.3(34.8) minutes for total sleep time; 7.5 (29.8) minutes for wake after sleep onset; and 2.0 (7.3)% for sleep efficacy.


Combination of sleep postural/position changes and body acceleration improved detection of sleep/wake epochs compared to wrist acceleration alone. The chest sensors also improved estimation of sleep parameters of interest with stronger agreement with PSG. Our findings may expand the application of wearable sensors to clinically assess sleep outside of a sleep laboratory.


Razjouyan J, Lee H, Parthasarathy S, Mohler J, Sharafkhaneh A, Najafi B. Improving sleep quality assessment using wearable sensors by including information from postural/sleep position changes and body acceleration: a comparison of chest-worn sensors, wrist actigraphy, and polysomnography. J Clin Sleep Med. 2017;13(11):1301–1310.

Supplemental Material

Login to view supplemental material

Please login to continue reading the full article

Subscribers to JCSM get full access to current and past issues of the JCSM.

Login to JCSM

Not a subscriber?

Join the American Academy of Sleep Medicine and receive a subscription to JCSM with your membership

Subscribe to JCSM:  $75/volume year for individuals or $140/volume year for institutions to access all current articles and archives published in JCSM.

Download this article*:   $20 to access a PDF version of a specific article from the current issue of JCSM.

*Purchase of an electronic download of JCSM provides permission to access and print the issue/article for personal scholarly, research and educational use. Please note: access to the article is from the computer on which the article is purchased ONLY. Purchase of the article does not permit distribution, electronic or otherwise, of the article without the written permission of the AASM. Further, purchase does not permit the posting of article text on an online forum or website.